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Abstract
Coastal forests sequester and store more carbon than their terrestrial counterparts but are at
greater risk of conversion due to sea level rise. Saltwater intrusion from sea level rise converts
freshwater-dependent coastal forests to more salt-tolerant marshes, leaving ‘ghost forests’ of
standing dead trees behind. Although recent research has investigated the drivers and rates of
coastal forest decline, the associated changes in carbon storage across large extents have not been
quantified. We mapped ghost forest spread across coastal North Carolina, USA, using repeat Light
Detection and Ranging (LiDAR) surveys, multi-temporal satellite imagery, and field measurements
of aboveground biomass to quantify changes in aboveground carbon. Between 2001 and 2014, 15%
(167 km2) of unmanaged public land in the region changed from coastal forest to transition-ghost
forest characterized by salt-tolerant shrubs and herbaceous plants. Salinity and proximity to the
estuarine shoreline were significant drivers of these changes. This conversion resulted in a net
aboveground carbon decline of 0.13± 0.01 TgC. Because saltwater intrusion precedes inundation
and influences vegetation condition in advance of mature tree mortality, we suggest that
aboveground carbon declines can be used to detect the leading edge of sea level rise. Aboveground
carbon declines along the shoreline were offset by inland aboveground carbon gains associated
with natural succession and forestry activities like planting (2.46± 0.25 TgC net aboveground
carbon across study area). Our study highlights the combined effects of saltwater intrusion and
land use on aboveground carbon dynamics of temperate coastal forests in North America. By
quantifying the effects of multiple interacting disturbances, our measurement and mapping
methods should be applicable to other coastal landscapes experiencing saltwater intrusion. As sea
level rise increases the landward extent of inundation and saltwater exposure, investigations at
these large scales are requisite for effective resource allocation for climate adaptation. In this
changing environment, human intervention, whether through land preservation, restoration, or
reforestation, may be necessary to prevent aboveground carbon loss.
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1. Introduction

Coastal forests sequester and store more carbon per
unit area than upland forest (McLeod et al 2011;
Simard et al 2019), storing carbon both near-term in
aboveground biomass and longer-term in sediments
(Duarte and Prairie 2005, Poulter et al 2008, Noe et al
2016, Krauss et al 2017). Despite their limited global
extent, they play a disproportionately important role
in the global carbon cycle (Poulter et al 2006; Hen-
man and Poulter 2008). Through sequestration and
storage, coastal forests provide critical ecosystem ser-
vices that help regulate global climate andmitigate cli-
mate change (MEA 2005, McLeod et al 2011). How-
ever, these coastal systems are shrinking precipitously
due to human land-use modifications and sea level
rise (McLeod et al 2011, Pendleton et al 2012). As sea
levels rise, inundation, saltwater intrusion, and land
loss will increase (Church and White 2011, Church
et al 2013, Dangendorf et al 2017), compounding the
negative impacts from human pressures (He and Sil-
liman 2019). Coastal systems have always been con-
sidered dynamic and resilient (Kirwan andMegonigal
2013), however, their ability to adapt to this rapid
change is uncertain.

The freshwater-dependent plant species charac-
teristic of temperate coastal forests have varying tol-
erances to inundation and salinity. Initially, exposure
primarily impacts seedlings by inhibiting regenera-
tion (Brinson et al 1995,Williams et al 1998, DeSantis
et al 2007, Krauss et al 2009, Langston et al 2017).
Mature trees can generally withstand short periods
of inundation and exposure, but prolonged exposure
leads to osmotic stress and eventual mortality (Kir-
wan et al 2007, Conner et al 2007, Krauss et al 2018).

In response to increased salinization and inunda-
tion, freshwater-dependent coastal forests are retreat-
ing upslope, leaving behind dead trees surrounded
by salt-tolerant shrubs and herbaceous plant species
(Hackney and Yelverton 1990, Williams et al 1999a).
This conversion can occur over the course of a dec-
ade or more (Craft 2012, White and Kaplan 2017).
These ‘ghost forests’ are common along the North
Atlantic Coast and Gulf ofMexico, varying geograph-
ically in extent and conversion rates due to spatial
variation in plant community composition (Poulter
et al 2008, 2009, Kirwan and Gedan 2019) and relat-
ive sea level rise rates (Karegar et al 2016, 2017). Ghost
forests are part of a transition zone between coastal
forest and marsh (figure 1), and can remain visible
on the landscape for decades after the forest has func-
tionally transitioned to marsh (Williams et al 1999b,
Moorman et al 1999), serving as late-stage indicators
of saltwater intrusion.

Multi-layered and structurally complex coastal
forests transition to marshes with very little complex-
ity following saltwater intrusion. Losses in structural
complexity have important implications for carbon
storage. Because aboveground carbon is closely linked

with plant height (Jenkins et al 2003), we expect that
conversion from forest to marsh will decrease above-
ground carbon storage. As evidenced in other bio-
mes, the transition from forest to herbaceous plant
communities (e.g. grasslands) decreases aboveground
carbon storage and increases albedo, which exacer-
bates the effects of greenhouse gases (Gibbon et al
2010, Kirschbaum et al 2012). In coastal systems, the
impacts of ghost forest proliferation on ecosystem
services, particularly carbon storage, are understud-
ied (Conner et al 2007, Erwin 2009, Tully et al 2019).
The broad spatial and temporal extents at which con-
version occurs make measurement particularly diffi-
cult.Making quantification evenmore difficult, local-
scale factors such as salinity gradients, wind tides,
surface water flow, and geologic activity (e.g. sub-
sidence), create fine-scale heterogeneity across these
broad extents (Ardón et al 2013, Herbert et al 2015).

We integrated multiple sources of remote sens-
ing data and field data to quantify changes in above-
ground carbon storage across a large low-lying coastal
region in North Carolina, USA. Past studies examin-
ing landscape-scale changes in coastal forests have
focused on tropical mangrove forests (e.g. Hamilton
and Casey 2016, Thomas et al 2017) not freshwater-
dependent temperate forests (however, see Raabe
and Stumpf 2016, Schieder et al 2018), and have
not addressed associated aboveground carbon storage
dynamics (however, in mangrove forests, see Lago-
masino et al 2019). To our knowledge, ours is the first
study to examine landscape-scale aboveground car-
bon dynamics related to ghost forest proliferation,
a phenomenon unique to temperate regions. Our
objectives were to (1)map the 13-year spread of ghost
forests in a large low-lying coastal region, (2) quantify
the associated loss in aboveground carbon, and (3)
compare forest loss from ghost forest spread to other
sources of disturbance (e.g. wildfires and forestry
activities). Because coastal forests serve as buffers
against storm surges (Barbier et al 2011), provide
habitat for wildlife species (Field et al 2016, Taillie
et al 2019), and preserve productivity of lands in
coastal communities (McNulty et al 2015, Tully et al
2019), the ability to identify landscape-scale trans-
itions from forest to marsh is ecologically and eco-
nomically important. The carbon dynamics related
to this unique transition also highlight a potentially
important positive feedback loop between climate
change and greenhouse gas emissions (Henman and
Poulter 2008). By examining spatio-temporal pat-
terns in ghost forest extent and aboveground car-
bon, we demonstrate how saltwater intrusion from
sea level rise impacts important carbon pools in
temperate coastal forests. As sea level rise accel-
erates, landscape-scale measurements of this phe-
nomenon are integral to a better understanding of
the impacts of climate on the global carbon cycle
and the continued persistence of critical ecosystem
services.
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Figure 1. (a) Schematic of the forest-to-marsh transition gradient typical in eastern North Carolina, USA. (b) Coastal forests,
dominated by loblolly pine (Pinus taeda), bald cypress (Taxodium distichum), or pond pine (Pinus serotina), give way to (c)
‘transition forest’ with an abundance of shrub and herbaceous species that have higher salt tolerances. (d) In later stages, marked
by a greater number of dead standing trees, transition forest is generally referred to as ‘ghost forest.’ Without competition from
tree seedlings, salt-tolerant marsh species migrate into the area (referred to as marsh migration), completing the transition to (e)
herbaceous marsh comprised of brackish or saline herbaceous plant species like sawgrass (Cladium jamaicense) and black
needlerush (Juncus romerianus). (Image credit: L S Smart.)

2. Methods

Our study area was an approximately 4000-km2 por-
tion of the Albemarle-Pamlico Peninsula in eastern
North Carolina, USA, buffered from the Atlantic
Ocean by a chain of barrier islands and the Albemarle
and Pamlico Sounds. Almost half (47%) of the pen-
insula is < 1 m in elevation (figure 2(a)); the region is
therefore highly vulnerable to sea level rise impacts,
and saltwater intrusion has already caused forest
decline here (Young 1995, Moorhead and Brinson
1995, Poulter 2005). Forty percent of the lands on
the peninsula are publicly owned; most of these are
‘unmanaged’. We refer to these areas as ‘unmanaged’
because there are no extractive activities, but they
may be managed for biodiversity, which can include
mimicking disturbance events (e.g. controlled or pre-
scribed burning to imitate natural fire disturbances)
and controlling water flow. Managed public lands
refer to lands that are subject to extractive use (e.g.
logging or mining) (figure 2(b)). Privately held lands
are comprised of a mix of natural forest, agriculture,
and forestry uses (figure 2(b)).

We collected field data at five sites along the
shoreline of the Albemarle-Pamlico Peninsula. Each
site was accessible by road, under 1 m in elevation,

and publicly owned (no active management at the
site). At each site, we sampled evenly across the forest-
marsh gradient by delineating three vegetation zones
(forest, transition-ghost forest, andmarsh) using aer-
ial photographs and confirmed these in the field as
part of the sampling protocol (Poulter et al 2005). We
randomly selected seven 12-m-radius vegetation plots
in each zone (figure 2(b)). At each plot, we recor-
ded species name, diameter at breast height (DBH),
and height for live woody species greater than 2.5 cm
in diameter; for vegetation less than 1 m in height,
we recorded percent cover within five 1-m2 subplots.
We averaged percent cover across the five subplots to
obtain an average cover value for each species.We cal-
culated the aboveground biomass of each plant docu-
mented in the field by applying species-specific allo-
metric equations (table S3; Smith and Brand 1983;
Jenkins et al 2003; Castillo et al 2008; Trilla et al
2009; Riegel et al 2013). For each plot, we summed all
aboveground biomass values and converted them to
a per-unit area estimate (Mg ha−1). Each site had 21
plots, except for one site, which had no marsh zone
(14 plots). We first inventoried vegetation between
November 2003 and February 2004, then used the
same protocol to resample the plots between April
and July 2016 (Taillie et al 2019).
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Figure 2. (a) The Albemarle-Pamlico Peninsula in eastern North Carolina, showing landcover (National Land Cover Database
2016 data) and areas less than 1 m in elevation. (b) Unmanaged and other public lands on the Albemarle-Pamlico Peninsula in
eastern North Carolina. Ninety-eight field plots were established across five sites in the study area. At each site, plots were
established across a vegetation gradient: forest, transition-ghost forest, and marsh (see example in inset map; forest plots are
green, transition-ghost forest plots are yellow, and marsh plots are blue).

2.1. Mapping ghost forests
To identify ghost forest spread, we first mapped three
vegetation classes of interest (forest, transition-ghost
forest, andmarsh) across the study area for two points
in time: 2001 and 2014, using remotely sensed data
from Landsat satellite imagery and Light Detection
And Ranging (LiDAR) surveys.

We used all cloud-free images from Landsat
7 ETM + and Landsat 8 OLI from May-August
(warm, wet period) and October-December (cool,
dry period) for 2001 and 2014 (30-m resolution) to
match the years of the available LiDAR data, prepro-
cessing the data after Roy et al (2016) (US Geolo-
gical Survey 2013, Google Earth Engine 2018). Spec-
tral indices derived from Landsat included mean
and maximum values for individual bands as well
as derived vegetation indices including the Normal-
ized Difference Vegetation Index (NDVI), Enhanced
Vegetation Index (EVI), and tasseled cap indices

(greenness, wetness, and brightness) (see table S1 for
complete list of metrics).

We used LiDAR data, available from the North
Carolina Floodplain Mapping Program’s 2001 and
2014 statewide elevation mapping efforts (NOAA
2012, 2014), to generate landscape-scale vegetation
height and density metrics across the study area.
We created LiDAR vegetation metrics by subtract-
ing the high-resolution digital elevation mod-
els (DEMs) derived for each year from the year’s
non-ground point clouds (the 2014 LiDAR data-
set had a point density 18 times greater than
the 2001 dataset, and so we analyzed each data-
set independently; figure S1 available online at
stacks.iop.org/ERL/15/104028/mmedia). We used
30-m resolution grids to match the spatial resolution
of the Landsat data (see table S2 for complete list of
metrics). We used permanent landmarks to align the
Landsat- and LiDAR-based rasters. Vegetation heights
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from the LiDAR data were binned into height strata
by applying height thresholds associated with veget-
ation understory, midstory, and overstory (Hudak
et al 2008, 2009, 2012, Smart et al 2012, Singh et al
2018).

We used the machine-learning algorithm Ran-
dom Forest (RF, Breiman 2001; Evans and Cushman
2009; Evans et al 2011) as our classification method,
using the ‘randomForest’ package in R (Liaw 2018, RC
Team 2018). We used the 2003 field measurements to
train the 2001 model and the repeat field measure-
ments from 2016 to train the 2014 model. For each
model, we used theModel Improvement Ratio (MIR)
to select the best predictor variables among the suite
of candidate variables, after (Hudak et al 2012). We
used a bootstrap approach to evaluate model per-
formance. Using 1000 permutations of the final fitted
RF model, we tested model significance, performed
validation withholding 30% of the training data, and
generated metrics of predictor variable importance
(performed using ‘rfUtillities’ and ‘rfPermute’ in R;
Archer 2018, Evans and Murphy 2018). Median and
maximumvegetation height, EVI, tasseled cap indices
(wetness), variance in vegetation heights, and NDVI
were among the top predictor variables in both mod-
els (figure S2 and S3 for 2001 variable importance; S4
and S5 for 2014 variable importance). We performed
a change analysis using these 2001 and 2014 vegeta-
tion class maps to quantify changes in forest extent
and conversion from one vegetation class to another.

2.2. Measuring aboveground carbon
We identified the impacts of ghost forest prolifera-
tion on aboveground carbon bymapping total above-
ground biomass (AGB) for two points in time: 2001
and 2014, using the metrics derived from LiDAR and
Landsat satellite imagery as described in section 2.1.

We generated maps of aboveground biomass for
the study area by regressing the remotely sensed
vegetation metrics against the reference plots using
the RF algorithm’s regression model functionality.
Maps of aboveground biomass values at 30-m resolu-
tion were generated from the RFmodels for the study
area. We applied the methods described in section
2.1 for model building, training, and testing to select
the best regression models for 2001 and 2014. Mean
and median vegetation height, maximum vegetation
height, variance in vegetation height, and NDVI were
among the top performing predictors selected in the
models (see figure S7 for variable importance).

Change in AGB for the study area was calculated
as the difference between 2001 and 2014 AGB values
and represented the net change over time, incorporat-
ing both gains from growth and losses frommortality
or removal (Brienen et al 2015, Chen et al 2016). We
reported change as an average value per unit area (Mg
ha−1) and a total (Tg) for the study area. We repor-
ted standard errors (S.E.) by propagating the error
in the 2001 and 2014 AGB predictions (figure S8).

We calculated aboveground carbon in 2001 and 2014
by applying vegetation-specific scaling factors (table
S4; Byrd et al 2018; Martin et al 2018) to the AGB
maps based on the vegetation classification maps. We
calculated net aboveground carbon as the difference
between 2001 and 2014 aboveground carbon values
(TgC).

In 2008 and 2011, the study area was impacted
by catastrophic wildfires (our field plots were unaf-
fected). The 2008 Evans Road Fire covered approx-
imately 165 km2, affecting both unmanaged pub-
lic lands and private lands. The 2011 Pains Bay Fire
covered approximately 160 km2 and affected both
managed and unmanaged public lands. The Pains Bay
Fire occurred close to the estuarine shoreline and the
Evans Road Fire occurred in the central portion of the
peninsula. We obtained spatial files of fire perimeters
from theMonitoring Trends in Burn Severity (MTBS)
dataset and estimated the impact of these fires on
aboveground biomass and carbon (USDA Forest Ser-
vice and US Geological Survey 2017).

To isolate changes in AGB and aboveground car-
bon associated with ghost forest spread from those
resulting from other disturbance sources (e.g. wild-
fires and management activities on private lands),
we provided multiple summaries of AGB change. We
estimated AGB and carbon for (1) unmanaged pub-
lic lands not impacted by fire; (2) unmanaged public
lands including those impacted by fire; (3) unman-
aged public lands and private lands not impacted by
fire; (4) unmanaged public lands and private lands
including those impacted by fire; and (5) only lands
impacted by fires. To assign sections of the landscape
to each of these categories, we overlaid our maps with
the MTBS data layers and the North Carolina state
department’s managed areas dataset (NCNHP 2017).

2.3. Salinity and aboveground carbon dynamics
We used elevation and distance to shoreline as prox-
ies for sea level rise vulnerability. Because artificial
drainage networks also serve as conduits for saltwater
intrusion if they are connected directly or indirectly to
the estuarine shoreline, we used the National Hydro-
graphy Dataset to identify the estuarine shoreline and
canals that were either directly or indirectly (con-
nected via other canals) connected to the estuarine
shoreline (US Geographical Survey 2018). We calcu-
lated the Euclidean distance from each part of the
study area to the estuarine shoreline and connected
canals.

We used salinity data from the Environ-
mental Protection Agency’s STORage and RETrieval
(STORET) database for 40 water quality-monitoring
sites in the sounds and canals adjacent to the study
area (EPA 2017).We calculatedmean salinity between
2001 and 2014 from 3500 + unique observations. As
a proxy for soil salinity, we interpolated the average
salinity values (in parts per thousand of NaCl) at each

5



Environ. Res. Lett. 15 (2020) 104028 L S Smart et al

Figure 3. (a) Vegetation classification (forest, transition-ghost forest as TGF, and marsh) of the eastern portion of the
Albemarle-Pamlico Peninsula, NC in 2001; (b) vegetation classification of the eastern portion in 2014; and (c) vegetation class
change between 2001 and 2014.

of these locations across the study area using a spher-
ical kriging method (Oliver andWebster 1990, Emadi
and Baghernejad 2014).

We randomly selected a sample of 1000 locations
on unmanaged public lands not impacted by fire in
the study area for analysis (figure S12). We tested the
relationships between our variables (distance to estu-
arine shoreline, distance to connected canals, salinity,
elevation, and vegetation type in 2014) and above-
ground biomass change (Mg ha−1) using an Ordin-
ary Least Squares (OLS) regression model. Global
Moran’s I tests on OLS residuals suggested significant
spatial autocorrelation (p-value < 0.00001), so a spa-
tial autoregressive error model (SEM) was used to fit
the final model. We specified the spatial component
of our error term using a row-normalized k-nearest
neighborhood (k = 8) weight matrix. Regression
analyses were performed using the ‘spdep’ package in
R (Bivand 2017).

3. Results

3.1. Mapping ghost forests
Classification error varied by vegetation class and
year. In 2001, class error for forest was 6%, transition-
ghost forest was 20%, and marsh was 18% (cv-
kappa = 0.76, cv-out-of-bag error = 15%, cv-
error variance = 0.0002). The model commonly

misclassified forest as transition-ghost forest and
transition-ghost forest as marsh (table S5). In 2014,
class error for forest was 17%, transition-ghost was
40%, and marsh was 18% (cv-kappa = 0.60, cv-out-
of-bag error= 26%, cv-error variance= 0.0003). The
model commonlymisclassified bothmarsh and forest
as transition-ghost (table S6). Maximum vegetation
height (for the 2001 model; figure S2, figure S3) and
NDVI (for the 2014 model; figure S4, figure S5) were
the highest performing predictors across all vegeta-
tion classes.

On unmanaged public lands not impacted by fire,
there was a net loss of forest (152 km2) between 2001
and 2014, with 167 km2 of coastal forest convert-
ing to transition-ghost forest during this period; this
change occurred on approximately 15% of the area.
Conversion of transition-ghost forest to marsh com-
prised approximately 6 km2 (0.5%). Between 2001
and 2014, 81% of the study area remained in the same
forest vegetation type (figure 3(c), see table S7 for
error estimates).

3.2. Measuring aboveground carbon
Total aboveground biomass models performed
well, with the 2014 RF model performing slightly
better (R2

adj. = 0.78, RMSE = 15.0 Mg ha−1, %
RMSE = 9.5) than the 2001 model (R2

adj. = 0.75,
RMSE= 18.3 Mg ha−1, % RMSE= 12.6) (figure S6).
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Table 1.Measures of total area (km2), mean aboveground biomass (AGB) change (Mg ha−1), net aboveground biomass (Tg), and
associated model standard errors (S.E.) for different landscape summary categories and for selected vegetation change classes for the
Albemarle-Pamlico study area in eastern North Carolina, USA. In landscape category descriptions, ‘–’= ‘excluding’ and ‘+’=
‘including’. Values for change classes are reported only for unmanaged public lands not including those impacted by fire.

Total area Mean AGB change (S.E.) Net AGB (S.E.)

Landscape category
Unmanaged public lands–fire 1138 10.7 (2.3) 1.21 (0.26)
Unmanaged public lands+ fire 1381 6.0 (2.2) 0.83 (0.30)
Unmanaged public lands+ private lands–fire 3320 14.4 (2.4) 4.67 (0.80)
Unmanaged public lands+ private lands+ fire 3716 11.0 (2.3) 3.96 (0.85)
Fire 396 −18.2 (1.3) −0.71 (0.05)
Pains Bay fire 160 −16.7 (1.5) −0.27 (0.02)
Evans Road fire 165 −24.2 (1.3) −0.40 (0.02)

Change class
No change foresta 828 17.8 (2.8) 1.49 (0.23)
Forest to transition-ghost forest 167 −16.2 (1.1) −0.27 (0.02)
No change transition-ghost forest 39 −7.3 (0.8) −0.03 (0.003)
Transition-ghost forest to marsh 6 −7.2 (0.4) −0.004 (0.0002)
aIncluding unchanged forested private lands, net AGB is 4.90± 0.51 Tg (2.46± 0.25 TgC).

Figure 4. (a) Aboveground biomass change (AGB; measured in Mg ha−1) on the Albemarle-Pamlico Peninsula in eastern North
Carolina, USA. Grey areas are unmeasured areas (non-forested in 2001, e.g. developed lands or agricultural areas) and yellow
crosshatched areas are fire perimeters provided by the Monitoring Trends in Burn Severity (MTBS) dataset. (b) An example of
AGB change resulting from human land-use activities like planting and harvesting on pine plantations. (c) An example of AGB
change along the shoreline in an unmanaged public portion of the landscape. (d) AGB change within the fire perimeter of the
Pains Bay fire that occurred in 2011. (e) Characteristic pattern of forest dieback resulting from either an acute or gradual saltwater
intrusion event (within Gull Rock Game Lands).

Mean and median vegetation height predictor vari-
ables contributedmost to overallmodel performance,
confirming the importance of vegetation structure
to aboveground biomass estimation (figure S7). By
vegetation type, predicted total aboveground biomass

for the forested vegetation class (2001 R2
adj. = 0.96,

2014 R2
adj. = 0.92) outperformed the predicted AGB

for the transition-ghost forest (2001 R2
adj. = 0.73,

2014 R2
adj. = 0.76, figure S9). Mapped aboveground

biomass change between 2001 and 2014 accurately
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Figure 5.Mean field-measured aboveground biomass and associated standard errors (S.E.) by vegetation type (forest,
transition-ghost forest, and marsh) and year (2003= black, 2016= light grey) for 98 plots distributed across 5 sites on the
Albemarle-Pamlico Peninsula in eastern NC, USA. The ∗ denotes a statistically significant difference between years using the
Wilcoxon Signed Rank Test (p < 0.05). For more detailed marsh plots, see figure S11.

related to field-based estimates of aboveground bio-
mass change between 2003 and 2016 (R2

adj. = 0.64,
RMSE= 13.4 Mg ha−1, figure S10).

On unmanaged public lands not impacted by fire,
change in AGB was positive (mean 10.7 ± 2.3 Mg
ha−1) with a net of 1.21 ± 0.26 Tg (6.2 Tg in 2001;
7.4 Tg in 2014). This equates to a 19% increase
(0.53 ± 0.10 TgC) in aboveground carbon stores
between 2001 and 2014 (table 1). Though car-
bon gains offset declines, biomass dynamics varied
spatially, with losses occurring closer to the estu-
arine shoreline and gains more prevalent inland
(figure 4(a)). We confirmed significant above-
ground biomass declines (Wilcoxon Signed Rank
test, α = 0.05) in the field measurements during
the study period (figure 5), with a total above-
ground biomass loss overall of 8.8 ± 2.1 Mg ha−1

(p-value < 0.001); forest plots decreased in above-
ground biomass by 28% (p-value < 0.05), and
transition-ghost forest plots decreased by 39%
(p-value= 0.2).

When the impacts of fire were included, AGB
on unmanaged public lands only increased by
0.83 ± 0.30 Tg between 2001 and 2014, with mean
6.0± 2.2 Mg ha−1.

Without fire, AGB on unmanaged public lands
plus private lands increased by 4.67 ± 0.80 Tg
(mean 14.4 ± 2.4 Mg ha−1) between 2001 and
2014 but only increased by 3.96 ± 0.85 Tg (mean
11.0 ± 2.3 Mg ha−1) when the impacts of fire were
included.

Fire disturbances alone resulted in an overall AGB
loss of 0.71 ± 0.05 Tg (−0.35 ± 0.05 TgC; figure 6)
between 2001 and 2014. The Pains Bay fire (2011)
resulted in an AGB loss of 0.27± 0.02 Tg (figure 4(d))

and the EvansRoad fire (2008) resulted in anAGB loss
of 0.40± 0.02 Tg (table 1).

By combining our vegetation class change maps
from section 3.1 and AGB maps described above,
we quantified between- and within-class changes in
AGB (figure 7). Forested areas that remained for-
ested between 2001 and 2014 experienced an over-
all net increase in AGB (17.8 ± 2.8 Mg ha−1,
table 1). This resulted in an aboveground car-
bon gain of 0.75 ± 0.12 TgC (2.46 ± 0.25 TgC
when private lands are included). Conversion from
forest to transition-ghost forest resulted in AGB loss
(−16.2 ± 1.1 Mg ha−1) and a 0.13 ± 0.01 TgC
loss in aboveground carbon. Transition-ghost forest
that remained transition-ghost forest experienced an
overall net decline in aboveground biomass (−7.3 ±
0.8 Mg ha−1).

3.3. Salinity and aboveground carbon dynamics
Using distance from the estuarine shoreline as a
proxy for sea level rise vulnerability, we observed that
areas closer to the shore (<1 km) had a net negat-
ive AGB change (−2.6 ± 0.8 Mg ha−1), and areas
farther from the shore (>1 km) had a net posit-
ive change (14.1 ± 0.9 Mg ha−1) in AGB (Kruskal-
Wallis test; p-value < 0.0001). Our salinity interpol-
ation ranged from 0 ppt to a maximum of 18 ppt
in our study area (figure 8(b)), very similar to soil
water measurements collected at the field sites (Tail-
lie et al 2019). Using a threshold of 2 ppt (Her-
bert et al 2015), areas with lower salinities (<2 ppt)
gainedmore aboveground biomass between 2001 and
2014 (gain = 30.7 ± 0.8 Mg ha−1) than areas with
higher salinities (>2 ppt; gain= 12.8± 1.0 Mg ha−1;
Kruskal-Wallis test; p-value < 0.0001).
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Figure 6. For the Albemarle-Pamlico Peninsula in eastern NC, USA, net aboveground carbon (TgC) and associated model
standard errors summarized by: (1) unmanaged public lands not impacted by fire; (2) unmanaged public lands including those
impacted by fire; (3) unmanaged public lands and private lands not impacted by fire; (4) unmanaged public lands and private
lands including those impacted by fire; and (5) fire impacts alone.

Results from our spatial error model indic-
ated that salinity was negatively related to above-
ground biomass; as salinity increases AGB decreases
(p-value < 0.01). Connected canal distance was
also negatively related to aboveground biomass (p-
value < 0.01). The effect of elevation on above-
ground biomass differed based on the characteristic
vegetation type present in 2014; elevation was pos-
itively related to aboveground biomass in the marsh
and transition-ghost forest vegetation types but neg-
atively related to aboveground biomass in areas clas-
sified as forest (table 2).

4. Discussion

Our results highlight that, although aboveground car-
bon declines are apparent nearshore, land manage-
ment activities and forest growth offset these declines.
As the landward extent of sea level rise impact
increases, this study highlights potential opportun-
ities for targeted human interventions to preserve
the region’s carbon sink. Studies in highly dynamic
coastal systems at fine scales across broad spatial
extents are rare, posing challenges for monitoring
and forecasting coastal ecosystem change. However,
with increasing availability of data from aerial- and

satellite-based LiDAR platforms, our methods can be
applied in other low-lying coastal plains to develop
landscape-scale measurements of historical impacts
from sea level rise and identify areas most vulnerable
to future impacts. Investigations at these large scales
are requisite for allocating resources for monitoring,
targeting interventions, and adapting to a changing
environment.

Coastal vegetation transitions are driven by com-
plex interactions between gradual climate changes
and episodic disturbance events. Impacts from
gradual inundation alone occur at long (e.g. cen-
turies) temporal scales (Schieder et al 2018, Schieder
and Kirwan 2019). At much shorter time scales (such
as the one evaluated in this study), it is more likely
for episodic disturbances to drive vegetation changes
(Poulter et al 2009). However, the frequency, extent,
and severity of disturbances can be exacerbated or
mediated by climate change (Bender et al 2010).
Droughts, as an example, are expected to increase
in duration and severity as the climate changes,
increasing saltwater exposure in freshwater ecosys-
tems (via landward movement of the freshwater-
saltwater interface) (Ardón et al 2016). These com-
plex interactions (Herbert et al 2015), in addition to
land-use impediments like upslope agricultural fields
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Figure 7. Violin plots of aboveground biomass change (sampled at 500-m intervals across unmanaged public lands not impacted
by fire on the Albemarle-Pamlico Peninsula in eastern NC, USA) summarized by vegetation type change (transition-ghost forest
abbreviated as TGF).

or urban development (Enwright et al 2016, Borchert
et al 2018), will ultimately determine the spatiotem-
poral patterns of forest retreat in coastal systems.

Between 2001 and 2014, we measured conversion
from forest to a short (<5m) shrub-dominated trans-
ition phase on 15% of unmanaged public lands in our
study area. Analyzing temporal shifts in species com-
position using the same field plots as this study, Taillie
et al (2019) confirmed low tree regeneration between
2003 and 2016. Corroborating previous field studies
(Raabe and Stumpf 2016, Langston et al 2017), their
results indicated a general shift in vegetation towards
more salt-tolerant shrubs and herbaceous vegeta-
tion over the course of the study (Taillie et al 2019).
From our regression models, we identified differen-
tial impacts of elevation on aboveground biomass
across vegetation types. The counterintuitive result
for forests (a negative relationship between forest
aboveground biomass and elevation) may reflect the
inclusion of unknown human land-use management
on public lands affecting forest structure and species
composition and/or drainage patterns. It may also

reflect the overall decrease in aboveground biomass
variability as elevation increases or the transition into
a forest class with lower aboveground biomass. Both
our spatial predictions and regression models indic-
ated that aboveground biomass and carbon declines
were more likely near the estuarine shoreline and in
areas with higher salinities. This supports other stud-
ies that have demonstrated the importance of saliniz-
ation as a stronger driver of coastal forest change than
elevation and inundation alone (Krauss et al 2007,
Craft 2012, Taillie et al 2019). Shorelines, creeks, and
artificial drainages can serve as conduits for saltwater
to move inland, causing forest dieback in areas prox-
imal to these landscape features (Herbert et al 2015,
Krauss et al 2018, Ury et al 2020).

Human activities on private lands at higher eleva-
tions in the study area resulted in heterogeneous pat-
terns of both aboveground carbon gains and declines.
However, their net contribution to aboveground
carbon storage was positive. Carbon dynamics on
private lands in the study area result from individual
land-use decisions, including planting and harvesting
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Figure 8. (a) Euclidean distance to connected canals; inset= Euclidean distance to estuarine shoreline only. (b) Salinity
interpolation, measured in parts per thousand (ppt), using the 40 water quality monitoring stations along the Albemarle and
Pamlico Sounds in eastern North Carolina; inset= all points used in salinity interpolation from the Environmental Protection
Agency’s STORET database. High salinities occur along the estuarine shoreline in the east and gradually decrease westward, with
increasing distance from the shoreline. High salinities also occur in the southern part of the peninsula, resulting from proximity
to the more saline Pamlico Sound, with decreasing salinities northward closer to the near-fresh Albemarle Sound.

of timber and hydrologic modification via artificial
drainages and canals. Though meant to move water
off lands, the extensive drainage networks in our
study area are also susceptible to saltwater intru-
sion fromgradual inundation andhurricanes (Manda
et al 2014; Bhattachan et al 2018). The efficacy of
the networks is highly dependent upon landowner
management (Poulter et al 2008). Our spatial regres-
sionmodel showed that, on unmanaged public lands,
aboveground biomass declines were more prevalent
farther fromdrainage networks. Thismay seem coun-
terintuitive, but it is possible that active management
of drainage networks on public lands has lessened the
extent of saltwater intrusion. On private lands, the

relationship between biomass and canals might dif-
fer because landowner objectives and resources may
not match those of public land managers. To prevent
net carbon loss associated with climate change and
sea level rise, opportunities exist on private lands to
increase carbon through management activities like
reforestation, lengthened harvest cycles, and restrict-
ing harvests. These land management decisions also
have numerous co-benefits including increases in
water availability and biodiversity (Law et al 2018).
Human land management decisions and interven-
tions on the Albemarle-Pamlico Peninsula will largely
determine the continued ability of the region to serve
as a carbon sink.
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Table 2. Parameter estimates and standard errors (‘S.E.’) for the ordinary least squares (OLS) regression model and the spatial error
model (SEM) to test the relationship between aboveground biomass change (Mg ha−1) and five potential drivers at 1000 random
locations on the Albemarle-Pamlico Peninsula in NC, USA. Akaike information criterion (AIC), pseudo-R squared, and Moran’s I
residuals are also provided.

OLS SEM
estimate (S.E.) estimate (S.E.)

(Intercept) 38.0 (3.1)∗∗∗ 30.0 (4.6)∗∗∗

Salinity −1.8 (0.4)∗∗∗ −1.7 (0.7)∗∗

Distance to estuarine shoreline 1.5 (0.5)∗∗ 1.9 (0.9)∗

Distance to connected canals −3.9 (1.0)∗∗∗ −3.2 (1.4)∗∗

Transition-ghost forest −14.4 (23.2) −20.8 (21.8)
Marsh −46.2 (5.8)∗∗∗ −41.2 (5.5)∗∗∗

Elevation −27.0 (4.7)∗∗∗ −24.7 (5.1)∗∗∗

Salinity: distance to estuarine shoreline 0.1 (0.1) 0.2 (0.2)
Transition-ghost forest: elevation 13.3 (64.3) 27.1 (59.6)
Marsh: elevation 34.4 (10.0)∗∗∗ 31.0 (9.5)∗∗∗

AIC 9313.7 9245.1
Moran’s I residual 0.1∗∗∗ 0.0
(Pseudo- R squared) 0.27 0.32

Significance codes: 0 ‘∗∗∗’ 0.001 ‘∗∗’ 0.01 ‘∗’ 0.05 ‘.’ 0.1 ‘ ’ 1

Fire disturbance may also facilitate the progres-
sion from forest to marsh on salt-affected lands.
Frequent, low-intensity fires have historically main-
tained vegetation structure in these coastal ecosys-
tems (Frost 1995, Poulter et al 2009). Post-fire, we
would expect to see regeneration as part of natural
forest succession. Comparing two catastrophic wild-
fires that occurred during our study period—one in
2008 (Evans Road fire) in the study area center and
another in 2011 (Pains Bay fire) near the estuarine
shoreline—we find less regeneration than expected
(Frost 1995), as indicated by the aboveground car-
bon estimates, within the fire perimeters near the
shoreline. Fire disturbance and saltwater intrusion
may have an interactive effect that inhibits woody
species growth and promotes marsh migration land-
ward. Seedlings and saplings of freshwaterwoody spe-
cies need sufficient time to establish post-fire, but if
saltwater exposure occurs before these saplings have
established, post-fire regeneration will be reduced
(Poulter et al 2008). Although fires have historically
played a significant role in maintaining vegetation
structure and composition in this region, this role
may be changing along with the changing climate.

Saltwater intrusion from sea level rise is often
considered an ‘invisible’ threat because shifts in soil
chemistry are difficult to measure at large spatial
scales and are not generally perceived by the pub-
lic (Tully et al 2019). However, ghost forests provide
clear markers of sea level rise’s leading edge. There
is still a great deal of uncertainty about system-
level impacts of salinization on net carbon (Hen-
man and Poulter 2008), with recent research high-
lighting divergent biogeochemical responses of soils
to saltwater intrusion (Ardón et al 2013, Herbert et al
2015, Helton et al 2019). Future work that quantifies
the landscape-scale impacts of saltwater intrusion
on different carbon pools, would complement our

estimates of aboveground carbon. As rates of sea level
rise accelerate and the landward extent of impact
increases, a better understanding of the spatiotem-
poral patterns of forest retreat and aboveground
carbon in coastal systems is essential for develop-
ing effective management and adaptation plans. Our
research provides a critical baseline, from which
policy makers, landowners, and managers can draw,
to better anticipate the interventions and adaptation
activities necessary in both the near- and far-term.
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